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[1] Spatial and temporal variability of precipitation extremes are investigated by utilizing
daily observations available at 2.5° gridded fields in South America for the period
1940-2004. All 65 a of data from 1940—2004 are analyzed for spatial variability. The
temporal variability is investigated at each spatial grid by utilizing 25-a moving windows
from 1965-2004 and visualized through plots of the slope of the regression line in
addition to its quality measure (R?). The Poisson-generalized Pareto (Poisson-GP) model,
which is a peaks over threshold (POT) approach, is applied to weekly precipitation
maxima residuals based on the 95%-quantile threshold, while daily data are utilized to
analyze the number of consecutive daily extremes and daily extremes in a month based on
the 99%-quantile threshold. Using the Poisson-GP model, we compute parameters of
the GP distribution, return levels (RL) and a new measure called the precipitation extremes
volatility index (PEVI). The PEVI measures the variability of extremes and is

expressed as a ratio of return levels. From 1965-2004, the PEVI shows increasing trends
in the Amazon basin except eastern parts, few parts of the Brazilian highlands,
north-west Venezuela including Caracas, north Argentina, Uruguay, Rio De Janeiro, Sao
Paulo, Asuncion, and Cayenne. Catingas, few parts of the Brazilian highlands,

Sdo Paulo and Cayenne experience increasing number of consecutive 2- and 3-days
extremes from 1965-2004. The number of daily extremes, computed for each month,
suggest that local extremes occur mostly from December to April with

July to October being relatively quiet periods.
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1. Introduction

[2] Precipitation extremes can have significant impacts
on human society, economics, and nature. Flooding is
directly associated with precipitation extremes which can
cause large number of casualties, loss of property, water-
borne disease outbreaks in humans, plants and animals
[Curriero et al., 2001], and extensive damage to crops.
An understanding of the intensity and frequency of precip-
itation extremes can be very useful for infrastructure devel-
opment to prevent flooding and landslides, as well as for
water resources and agricultural management. This may
help nations and world bodies like the UN to be better
prepared for future disasters caused by floods and flash
floods. A better understanding of precipitation extremes can
help hydrologic scientists and climatologists gain enhanced
understanding of precipitation processes driving the extremes
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and perhaps delineate possible anthropogenic or natural
causes.

[3] Previous studies investigated trends and variability of
precipitation extremes in many parts of the world in the
twentieth century, specifically the United States [Kar/ et al.,
1995; Groisman et al., 1999], India [Goswami et al., 2006],
Southeast Asia and the South Pacific [Manton et al., 2001],
Australia [Suppiah and Hennessy, 1998; Groisman et al.,
19991, Europe [Haylock and Goodess, 2004], Caribbean
[Peterson et al., 2002], Italy [Brunetti et al., 2002], Balkans
[Cavazos, 2000], Canada, Norway, Russia, China, Mexico
[Groisman et al., 1999], Japan [Iwashima and Yamamoto,
1993], Sweden [Hellstrom and Malmgren, 2004], south-
eastern South America [Carvalho et al., 2002], and the state
of Sdo Paulo, Brazil [Liebmann et al., 2001]. However, we
are not aware of any prior investigations on spatial and
temporal variability of precipitation extremes over the entire
continent of South America.

[4] Extreme value theory (EVT) has been widely used in
hydrology to perform flood frequency analyses by utilizing
historical records of precipitation, steamflow and other
variables [Stedinger and Cohn, 1986]. In recent years,
EVT has been applied in multiple disciplines including
hydrology [Katz et al., 2002; Li et al., 2005], ecology
[Gaines and Denny, 1993; Katz et al., 2005], hurricane
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damage [Katz, 2002], temperature [Brown and Katz, 1995],
wind speed [Palutikof et al., 1999], and wildfire sizes
[Schoenberg et al., 2003]. The generalized extreme value
(GEV) distribution, developed by Jenkinson [1955], has
been traditionally utilized for modeling precipitation
extremes [Gumbel, 1958; Katz et al., 2002; Nadarajah,
2005]. This approach is also called the block maxima
approach since it fits the distribution to the highest values
in blocks of equal size, e.g., maximum yearly precipitation.
It has some advantages, e.g., its requirements can be met by
a simplified summary of data and the block maxima can be
assumed to be independent random variables [Katz et al.,
2005]. However, the main drawback of the GEV distribu-
tion is that it does not utilize all the available information
about the upper tail of the distribution, e.g., two highest
extreme precipitation events may occur in the same year
[Katz et al., 2005]. An alternative approach is to use peaks
over threshold (POT) which was originated in hydrology
and makes use of all the data available, e.g., all daily
precipitation data [Todorovic and Zelenhasic, 1970]. The
statistical model underlying the POT method consists of
(1) Poisson process for the occurrences of extremes over a
large threshold and (2) generalized Pareto (GP) distribution
(with scale (o) and shape (§) parameters), developed by
Picklands [1975], for the distribution of excesses over a
large threshold. This model is also termed as Poisson-GP
model. Recently, the GP distribution has been utilized for
modeling threshold excesses from daily precipitation data
[Li et al., 2005; Wilson and Toumi, 2005]. This study
utilizes the Poisson-GP model for investigating the spatial
and temporal variability of precipitation extremes at each
grid point in South America.

[5] Daily precipitation data is available in 2.5° gridded
fields for the period 1940-2004 in South America. The
Poisson-GP model assumes the data to be independent and
identically distributed (IID) [Katz et al., 2002]. A long-term
trend and seasonality in the data violate the assumption of
identically distributed data whereas the assumption of
independent data is violated if there is temporal dependence
in the data [Gaines and Denny, 1993]. In order to check the
IID assumption for the Poisson-GP model, we consider
three different sets of data based on this daily data: daily
data itself, weekly maxima, and weekly maxima residuals.
Weekly maxima residuals are obtained by subtracting the
long term mean of weekly maxima of a particular week,
i.e., mean of maximum weekly precipitation across the same
week for all years used in the analysis, from weekly maxima
of the same week. These data sets are compared to choose
the best data using temporal dependence through auto-
correlations and seasonal trends. In order to check the
quality of the Poisson-GP model, we also compare these
data sets using the Poisson property of the occurrences of
extremes and quality of the GP distribution. The scale of the
data and the need for efficient computations, which can be
eventually automated, preclude choosing thresholds based
on human judgment. We choose thresholds as 95%-quantile
for weekly maxima and weekly maxima residuals and 99%-
quantile for the daily data. The thresholds are computed at
each grid, hence the extremes can be said to be local in the
context of observed precipitation in the particular grid.
Spatial variability is investigated for 65 a (1940—2004)
and the last 40 a (1965-2004) are also studied for the
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temporal variability with 25-a moving window, i.e., 1965—
1989, 1966—1990,. . ., 1980—-2004. The temporal variability
is given by the slope of linear trend obtained by fitting a
regression line to 16 values from 16 time windows from
1965—2004. We also plot R* obtained from the regression
line which provides the overall measure of the quality of
fitted regression line. We investigate the spatial and tempo-
ral variability of thresholds, ¢ and ¢ and their standard
errors, 50-a and 200-a return levels (RL), and precipitation
extremes volatility index (PEVI) which measures the vari-
ability of extremes and is defined as a ratio of RLs. This
study computes PEVI as the ratio of 200-a and 50-a RLs,
where the latter represents a design return level, e.g., the
return level used for infrastructure design, while the former
represents rarer and more intense extremes. The PEVI
represents a measure of surprise if the rarer extremes were
to occur. The advantages of PEVI are easy interpretability,
computational efficiency and effective visualization through
a single parameter at each grid. The temporal variability of
thresholds from 1965-2004 also gives an indication about
increasing or decreasing trends in precipitation during that
period. On the basis of daily data, the spatial and temporal
variability of the number of consecutive 2-days and 3-days
extremes and the spatial variations of the number of
monthly extremes are investigated.

2. Data and Methodology
2.1. Data Availability

[6] The daily precipitation data used in this study was
published for Brazil, Venezuela, north Argentina, Paraguay,
Uruguay, Suriname and French Guiana from 1940—-2004 by
Liebmann and Allured [2005]. The data was presented in
2.5° gridded fields which were constructed using daily
precipitation totals from 7900 stations. The daily precipita-
tion at each point on a 2.5° grid was calculated by averaging
daily precipitation from all stations within a radius of 1.875°
of the point. The complete description of this data is given
by Liebmann and Allured [2005]. The spatial variability is
investigated for 65 a from 1940—2004 where the percentage
of data points available for the analysis at each grid point is
shown in Figure 1a. We analyze all those grid points having
14 or more years of data. For the spatial variability from
1940-2004, 223 grid points are analyzed since they have
14 or more years of data. We investigate temporal variabil-
ity for 40 a from 1965-2004 by considering 25-a moving
windows, i.e., 1965-1989, 1966—1990,..., 1980-2004.
Figure 1b shows the mean percentage of data points,
i.e., mean of 16 percentages of data for 16 moving windows
from 1965-2004, available for the analysis at each grid
point. A total of 216 grid points are analyzed for the
temporal variability since they have mean percentage values
of 56% or more which is equivalent to 14 or more years of
data out of 25 a.

2.2. Methodology

2.2.1. Poisson-GP Model

[7] If x1,..., x, be a sequence of IID observations, the
Poisson-GP model consists of two components: (i) the
sequence of times at which exceedances occur over a large
threshold, u, i.e., x; > u for some i, is governed by a Poisson
process; and (ii) the limiting distribution of the excesses
over u, i.e., x; — u for some i, is the GP distribution [Katz et
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Figure 1. Percentage of total data available at each grid

point: (a) Percentage of daily data available in 65 a from
1940-2004; and (b) Mean percentage of daily data
available in 40 a from 1965-2004 computed using 25-a
moving window from 1965-2004, i.e., 1965-1989, 1966—
1990,. .., 1980—-2004. Each grid point having at least 14 a
of data is considered for the analysis. This means that all
grid points having more than 22% and 56% of data are used
for the analysis in (a) and (b), respectively. The white
regions on the map indicate either non-availability of data or
insufficient data, i.e., less than 14 a of data, for the analysis.

al., 2002]. The first component implies that if threshold
exceedances occur independent in time, the time intervals
between threshold exceedances, also referred as inter-arrival
times of threshold exceedances later in the study, follow one-
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dimensional homogeneous Poisson process. By the defini-
tion of one-dimensional homogeneous Poisson process, the
inter-arrival times of threshold exceedances are independent
and exponentially distributed.

[s] Letxy,...,x, be a sequence of [ID measurements. An
extreme event x is defined when it exceeds a threshold u. If

X(1y- - -» X are the k exceedances over threshold u, then
threshold excesses are defined as y; = x; — u, for i =
1,..., k. If yy,. .., yx is an independent sequence of a random

variable, the distribution of these threshold excesses can be
approximated by a member of the GP family [Coles, 2001].
The cumulative distribution function for the GP is given by

Fost) = { 1 5 (@00 14 (070) 20 g0

1
— eV, 13

(1)

where y > 0; o > 0 is a scale parameter; and —oo <& < o0 is
a shape parameter. The shape parameter is important to
understand the qualitative behavior of the GP distribution.
The GP distribution has an upper bound for £ < 0 (also
called bounded distribution) whereas it is unbounded for
& =0 (also called light-tailed distribution) and has no upper
limit for £ > 0 (also called heavy-tailed distribution) [Katz et
al., 2005]. The parameters o and £ of the GP distribution are
estimated by maximizing the log likelihood function since
maximum likelihood estimation assigns the highest prob-
ability to the observed data by adopting the model with the
greatest likelihood out of all the models under consideration
[Coles, 2001]. The log likelihood function for the GP
distribution defined in equation (1) is given as

;| —kloglo) = (1 +1/6) 7 log(er), >0
o —k lOg(O') - é Zf_f:] Vi, § = 07

where ¢; = (1 + &y;/o) [Coles, 2001]. The GP models can be
easily interpreted using extreme upper quantiles or return
levels. In hydrology, the return level is generally defined on
an annual scale, e.g., for a return period N, N-year return
level is defined as the level expected to be exceeded once in
every N years, or having an exceedance probability of 1/N
in any given year. N-year return level can be obtained by
inverting equation (1) as

o 13
e
u+olog(Nn(,), £=0,

where u and n, are the threshold and number of
observations in a year, respectively; and (, = k/n is the
probability of an individual observation exceeding u [Coles,
2001].

[9] The GP distribution is a limiting distribution of
excesses over a large threshold, therefore the choice of
threshold can be critical. If a threshold is low, it is likely to
violate the asymptotic basis of the model leading to bias in
estimation and extrapolation whereas a high threshold will
result in small number of exceedances for model estimation
leading to large estimation variance [Coles, 2001]. Two
methods for threshold selection, which provide a reasonable
approximation to the distribution of threshold excesses, are
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available: (a) find a threshold u, from the mean residual
plot, which is a plot between mean of excesses and
threshold u, above which the plot is approximately linear
in u, and (b) find a threshold uy above which the estimates
of £ and o are constant [Coles, 2001]. These threshold
choices are based on user judgments or subjective consid-
erations. This study does not use any of the above methods
for threshold selection because it is not feasible to select
thresholds based on visual inspection at each and every grid
point from 223 grid points in South America. Since the
extreme precipitation events are assumed to be rare, the
selection of a constant threshold for all spatial grid points is
not recommended because this may give more number of
extremes at some places or less/no extremes at other places.
A spatially distributed threshold is more justifiable hydro-
logically because the impact of large precipitation is likely
to depend on deviation from the usual at any given spatial
location. Previous researchers chose some high quantiles,
e.g., 97.5% and 95%, of the empirical distributions as
thresholds [Easterling et al., 2000; Meehl and Tebaldi,
2004]. In this study, we choose thresholds as the 99%-
quantile and 95%-quantile of the daily and weekly maxima
data, respectively.
2.2.2. Precipitation Extremes Volatility Index (PEVI)
[10] Hydraulic structures or other civilian infrastructures
are often designed to withstand extremes events of certain
magnitudes. However, the infrastructures may fail if they
are exposed to a rarer and more intense extreme event. A
measure that compares the increase in intensity with the
rarity of extreme events can be a useful indicator for
vulnerability, assuming all other conditions remain the
same. Assuming 7 > ¢, if the T-year event, which corre-
sponds to a (1/7) probability of occurrence, were to be
marginally higher than the z-year design event with a (1/¢)
probability, the infrastructures can be considered to be less
vulnerable compared to a situation where the difference
between the intensities is significant. The difference in the
intensities correspond to a measure of surprise when a lower
probability and more intense extreme event occurs com-
pared to the design event. The PEVI is a new measure
defined in this study to quantify and visualize the antici-
pated surprise caused by intense extreme precipitation
events. This measure is calculated here as a ratio of return
levels, i.e., RL7/RL,, where T > t; RLy and RL, are T-year
and z-year RLs, respectively. The PEVI does not contain
any new information from the point of view of extreme
value theory since the information contained in it can also
be derived from £ and RLs obtained from the GP distribu-
tion. The PEVI is theoretically satisfying since there is a
direct relation with £ given as

(T/1)" 0
PEVI = % ~ 4 log(T)/log(1), =0,
¢ 1, £<0.

The PEVI takes values greater or equal to one. The
engineering intuition for RL, is that it is a design RL for
t years corresponding to which hydraulic structures have
been designed or disaster readiness or mitigation systems
have been put in place. RLz is analogous to a higher bound
on the anticipated RL for T years which has lower
probability than RL, but may nevertheless occur in any
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given year. If the PEVI is unity, the higher bound on the
anticipated RL exactly equals the design RL implying very
less probability of more intense extremes. However, the
degree of surprise, when more intense extreme occurs,
increases with larger values of PEVI. In this sense, the PEVI
can also be used as the safety factor for engineering design.
This study chooses 7Tand ¢ as 200 and 50 a, respectively. We
also present the PEVI since it is statistically valid and can be
computed relatively efficiently for each grid point. It can be
more easily interpreted and visualized than the GP
distribution parameters, which do not have an event-based
intuitive interpretation. This provides a measure accessible
not only to statisticians but also to hydrologists, climatol-
ogists, and decision-makers. The fact that the PEVI can be
easily calculated and captured through a single number
makes the application to high-resolution data over large
geographical areas possible.

2.2.3. Quality of the Poisson-GP Model

[11] We investigate the quality of the Poisson process by
comparing the distribution of inter-arrival times of threshold
exceedances with the exponential distribution. The quality
of the GP distribution to threshold excesses is investigated
by examining probability and quantile plots obtained by
fitting the GP distribution to threshold excesses.

[12] We compare the distribution of the inter-arrival times
of threshold exceedances with the exponential distribution
using the goodness-of-fit statistic Dgp, suggested by Michael
[1983], which is based on the stabilized probability plot. Let
t,. . .t; be k inter-arrival times of exceedances over thresh-
old given as the 95%-quantile. If #; < ... < ¢ is an ordered
sample drawn from an exponential distribution, whose
cumulative distribution function is given as Fy(t, \) =
1 — e M for t > 0, the stabilized plot consists of coordi-
nates, (7;, s;), which can be calculated as

1
2 )

2 . 1 3
s; = — arcsin | /= Fo (tiu A),
T A

2 . 1/.
rp=—arcsiny [—(i—
T k

where ) is the maximum likelihood estimator of A under an
exponential distribution. From the stabilized plot, the
deviations of plotted points from a line joining (0, 0) and
(1, 1) indicate departures from their theoretical values [Coles,
1989]. One attractive property of the stabilized plot is that the
variances of plotted points are approximately equal
[Michael, 1983]. This property motivates the definition of
a goodness-of-fit statistic Dgp given as

Dep = g
Sp fi??fk'r’ sil,

which measures the maximum deviation of the plotted
points from their theoretical values and removes the
subjectivity in the interpretation of stabilized plots [Michael,
1983]. Dgp is analogous to and more powerful than the
standard Kolmogorov-Smirnov statistic [Michael, 1983;
Kimber, 1985]. Dgp is used here to measure the maximum
deviation of the inter-arrival times of threshold exceedances
from an exponential distribution. In order to test goodness-
of-fit of the inter-arrival times to the exponential distribu-
tion, Dgp can be compared with critical values D&p. D¥p
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is obtained as some sample quantile recorded from m
number of samples of sample size n [Coles, 1989]. Coles
[1989] calculated D&p as 95%-quantile of 10000 samples of
size 10, 25, and 40 data points for normal, logistic, Cauchy,
and double exponential distributions. Since this study
analyzes 223 grid points and each grid point can have
728 to 3380 data points, i.e., 14 to 65 a of weekly data, in
the interests of computational tractability, we consider 1000
samples for the calculation of D&. We generate 1000
independent samples of sample size n and calculate Dgp' ™
from the inter-arrival times of exceedances over the
threshold of 95%-quantile of mth sample for each m =
1,...,1000. We choose D& as the 95%-quantile of D$p* ™,
m = 1,...,1000. If Dgp < D%, we do not reject the
assumption that the inter-arrival times of threshold ex-
ceedances are independent and exponentially distributed. In
order to compare Dgp and D&p, we define a simple measure
as

If Dgp > 1, we reject with 95% confidence that the inter-
arrival times of threshold exceedances are exponentially
distributed, hence the inter-arrival times of threshold
exceedances do not follow one-dimensional homogeneous
Poisson process. If Dgp < 1, we do not reject the
assumption that the inter-arrival times of threshold
exceedances follow one-dimensional homogeneous Poisson
process. This study uses Dgp at all 223 grid points because it
can be easily computed, plotted and visualized in space for
comparisons.

[13] The quality of the fitted GP model to threshold
excesses can be checked using probability and quantile
plots. If yy, ..., y; are the k excesses over a threshold u
and F is an estimated GP model, the probability plot can be
generated as

{(i/(k+1),F(n));si=1,... .k},

where

ﬂﬁ_{l—P+(5wﬂ1@

1
1 - e_y/[77 E =Y

where & and & are the estimated values of o and &,
respectively. The quantile plots can be generated by plotting
the points as

{(F*I(i/(k+ 1)),y,->;i: 1,...,k},

where

F%w:u+%b4fq.

Both probability and quantile plots should consist of points
lying close to the unit diagonal if the GP model is
appropriate for modeling threshold excesses [Coles,
2001]. Goodness of fit tests for the GP distributions, e.g.,
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Anderson-Darling or Cramer-von Mises, as well as
independence tests, e.g., Kendall’s 7, exist and may need
to be explored in more detail in future follow-on studies.

2.3. Data Preparation for the Validity of the
Poisson-GP Model

[14] The validity of the Poisson-GP model is based on the
assumption that the data should be IID. The presence of
long term trends, seasonality, and temporal correlations
violate the assumption of IID data [Gaines and Denny,
1993]. Precipitation data may be temporally correlated and
have long term or seasonal trends [Gaines and Denny,
1993]. Galambos [1987] investigated the effect of long
term trends, seasonality, and temporal dependence in the
data on the validation of extreme value theory and found
that if the auto-correlation decreases as lag times increases,
the asymptotic distribution of extremes is the same as that
from IID samples. The detection of clustering of extremes is
also important because maximum likelihood estimation
technique assumes the time series of excesses over a large
threshold to be independent [Katz et al., 2005]. Clustering
gradually disappears as the threshold increases but there are
some variables, such as temperature, which exhibit cluster-
ing even with high thresholds [Coles, 2001]. If there exists
clusters of extremes over a high threshold, Todorovic and
Zelenhasic [1970] presented an ad hoc and inefficient
procedure for declustering which generates a time series
by choosing the highest value of each cluster.

[15] We analyze three different sets of data generated
from the daily data, such as daily, weekly maxima, and
weekly maxima residuals, to choose the best data satisfying
the IID assumption and improving the quality of the
Poisson-GP model. Instead of presenting the results from
223 grid points, we outline the results for two grid points
representing two very different scenarios. Each of these two
grid points has 65 a of daily precipitation and their locations
are given in terms of (longitude, latitude) as (315, —10) and
(310, —25). At these two grid points, we examine time
series plots for detecting seasonal trends and auto-correla-
tion plots for detecting temporal dependence. We detect the
clustering of extremes by plotting threshold excesses at
these grid points. We also compare Dgp for the quality of the
Poisson process, probability and quantile plots for the
quality of the GP distribution from daily, weekly maxima,
and weekly maxima residuals in our quest to find the best
data for the analysis. For Dgp, we analyze daily, weekly
maxima, and weekly maxima residuals data for all 223 grid
points in South America for three time windows, i.e., 1940—
2004, 1965-1989, and 1980—-2004.

2.3.1. Daily

[16] We first analyze daily precipitation data to check if
the IID assumption for the Poisson-GP model is satisfied.
The threshold is chosen as the 99%-quantile of time series at
each grid point. For 1940—2004, the time series, excesses
over the threshold, and auto-correlation plots for two grid
points, i.e., (315, —10) and (310, —25), are shown in
Figures 2 and 3, respectively. We do not observe any long
term trends at both grid points but they do show the
presence of seasonality and temporal dependence. The grid
point (315, —10) shows greater seasonality and temporal
dependence as compared to (310, —25). A total of 88%,
85%, and 82% grid points show significant auto-correlations
by visual inspection for the period 1940—-2004, 1965—1989,
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Figure 2. Grid point having (longitude, latitude) as (315, —10): Daily data with threshold given as
99%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 a; (b) Time series
for 4 a; (c) Excesses over a threshold for the first 10 a; (d) Auto-correlation plot; (e) Probability plot; and
(f) Quantile plot. We observe strong seasonality and temporal dependence and also some clustering of
extremes. The quality of probability and quantile plots is poor.

and 1980—-2004, respectively. We do observe some clusters
at both grid points (Figures 2a, 2c, 3a, and 3¢) but do not
use here the declustering method suggested by Todorovic
and Zelenhasic [1970] since the definition of clusters is
based on subjective considerations which makes this declus-
tering procedure inefficient for 223 grid points. Dgp is more
than one at a majority of locations in South America which
means that we reject with 95% confidence that the inter-
arrival times of threshold exceedances follow a homoge-
neous Poisson process at these locations (Figure 4a). The
quality of probability and quantile plots obtained by fitting
the GP distribution to daily data is good at (310, —25) but

poor at (315, —10) (Figures 2e, 2f, 3e, and 3f). On the basis
of all the above reasons, this study rules out the analysis of
daily precipitation for the investigation of spatial and
temporal variability of extremes using the Poisson-GP
model. Therefore we aggregate daily data into weekly
maxima data in order to check if it reduces temporal
dependence, resolves the clustering problem and improves
Dgp (described in the next section).
2.3.2. Weekly Maxima

[17] We generate weekly maxima precipitation time series
from daily precipitation at each grid point. In this case, the
threshold is chosen as the 95%-quantile of time series at
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Figure 3. Grid point having (longitude, latitude) as (310, —25): Daily data with threshold given as
99%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 a; (b) Time series
for 4 a; (c) Excesses over a threshold for the first 10 a; (d) Auto-correlation plot; (e) Probability plot; and
(f) Quantile plot. The seasonal patterns are weak but there exists temporal dependence and clusters of
extremes. The quality of probability and quantile plots is good.

each grid point. Both grid points, i.e., (315, —10) and
(310, —25), do not show any long term trends (Figures Sa
and 6a). At(315, —10), we do not observe significant changes
in seasonality and clustering of extremes from weekly maxima
as compared to daily data but weekly maxima shows greater
temporal dependence than daily as shown by auto-correlation
plots (Figures 2b, 2¢, 2d, 5b, 5c, and 5d). At (310, —25),
significant improvements are observed in seasonality, cluster-
ing of extremes, and temporal dependence from weekly
maxima if compared with daily (Figures 3b, 3c, 3d, 6b, 6c,
and 6d). We do observe some temporal dependence in weekly
maxima data at (310, —25) (Figure 6d). Visual inspection of

auto-correlation plots for all grid points indicates significant
auto-correlations in nearly 80%, 80%, and 77% grid points
for the period 1940-2004, 1965-1989, and 1980-2004,
respectively. At both grid points, the quality of probability
and quantile plots from weekly maxima degrades if com-
pared with daily (Figures 2e, 2f, 3e, 3f, Se, 5f, 6e, and 6f).
Dgp shows slight improvements as compared to that from
daily but it is more than one at the majority of grid points in
South America (Figure 4b).

[18] The results discussed and presented in this section
provide a couple of interesting insights, which, in turn, have
influenced our data analysis choices. First, minor to rela-
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Figure 4. Dgp for three time windows, i.e., 1940-2004, 1965—1989, and 1980—-2004: (a) daily data;
(b) weekly maxima; and (c) weekly maxima residuals. If Dgp < 1, we do not reject the assumption that
the inter-arrival times of threshold exceedances follow one-dimensional homogeneous Poisson process.
There is significant improvement in Dgp from weekly maxima residuals over daily and weekly maxima

data for all three time windows.

tively more significant reductions, in terms seasonality or
periodicity, clustering of extremes and autocorrelation, as
well as improvements in terms of the Dgp measure, are
observed from the analysis of weekly maxima data com-
pared to the corresponding daily data. This leads us to
choose weekly data in this study as they appear better suited
to the type of extreme value analysis utilized here. The fact
that daily precipitation data exhibit correlations with nearby
lags in well-known and has been used, for example, in
weather simulations [Rajagopalan and Lall, 1999]. On the
other hand, the correlations are known to decay quickly and

expected to be less significant at weekly timescales. While a
combination of our data analysis results with known statis-
tical insights about precipitation leads us to the choice of
weekly data, we believe that analysis of daily data, poten-
tially after creative post-processing designed to reduce the
observed dependence, may yield interesting insights. How-
ever, the success of the post-processing scheme may deter-
mine our degree of belief in the results of the extreme value
theory and therefore the scheme may need to get into rather
involved modeling of precipitation processes. This is left as
an area of future research. The second insight is that even
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Figure 5. Grid point having (longitude, latitude) as (315, —10): Weekly maxima data with threshold
given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 a; (b) Time
series for 4 a; (c) Excesses over a threshold for the first 10 a; (d) Auto-correlation plot; (e) Probability
plot; and (f) Quantile plot. We observe strong seasonal patterns, clusters of extremes, and temporal
dependence. The quality of probability and quantile plots is bad.

the weekly aggregated data, while apparently more suitable
than daily data, continues to retain seasonal or periodic
patterns and short-term temporal dependence. This leads us
to further investigate whether such patterns and dependence
can be reduced from weekly data prior to extreme value
analysis (described in the next section).
2.3.3. Weekly Maxima Residuals

[19] We use a brute-force approach described by Gaines
and Denny [1993] to remove seasonality from weekly
maxima to generate weekly maxima residuals. Weekly
maxima residuals are obtained by subtracting the long term
mean of weekly maxima of a particular week, i.e., mean of
maximum weekly precipitation across the same week for all

years used in the analysis, from weekly maxima of the same
week. At each grid point, the threshold is chosen as the
95%-quantile of time series. Long term trends at both grid
points, i.e., (315, —10) and (310, —25), are absent (Figures 7a
and 8a). At (315, —10), seasonality and temporal depen-
dence are still present for weekly maxima residuals data but
it has the lowest temporal dependence as compared to daily
and weekly maxima data sets (Figures 2b, 2d, 5b, 5d, 7b,
and 7d). At (310, —25), clustering of extremes from weekly
maxima residuals is not different from weekly maxima
(Figures 6¢ and 8c). There is no seasonality and temporal
dependence in weekly maxima residuals at (310, —25)
(Figures 8b and 8d). For weekly maxima residuals, nearly
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Figure 6. Grid point having (longitude, latitude) as (310, —25): Weekly maxima data with threshold
given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 a; (b) Time
series for 4 a; (c) Excesses over a threshold for the first 20 a; (d) Auto-correlation plot; (¢) Probability
plot; and (f) Quantile plot. The seasonal patterns are not evident from time series plots and there is some
improvement in clustering of extremes as compared to daily data (Figure 3c). We observe some temporal
dependence but it seems to be of the same order as from daily (Figure 3d). The quality of probability and
quantile plots is good but not better than the plots from daily (Figures 3e and 3f).

58%, 56%, and 46% grid points show significant temporal
dependence by visual inspection of auto-correlation plots
for the period 1940-2004, 1965—-1989, and 1980-2004,
respectively, which indicates significant improvement if
compared with the respective figures from daily or weekly
maxima. At both grid points, probability and quantile plots
consist of points lying closer to the unit diagonal indicating
that the GP distribution is reasonable for modeling threshold
excesses (Figures 7e, 7f, 8e, and 8f). Dgp for 1940—-2004,
1965-1989, and 1980-2004 show significant improve-
ments over daily and weekly maxima data since Dgp < 1

or Dgp lies between 1 and 1.5 at the majority of places in
South America for all time periods (Figure 4c). For 1965—
1989 and 1980-2004, Dsp from weekly maxima residuals
is less than one in more than 50% of total grid points
considered in this study (Figure 4c). As we move from daily
to weekly maxima residuals data for 1940-2004, Dgp
changes from greater than two to less than two for grid
(315, —10) whereas it changes from greater than one to less
than one for (310, —25) (Figures 4a and 4c). It is interesting
to note that the temporal dependence go away completely if
we consider weekly maxima residuals at (310, —25) where
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Figure 7. Grid point having (longitude, latitude) as (315, —10): Weekly maxima residuals data with
threshold given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for
65 a; (b) Time series for 4 a; (c) Excesses over a threshold for the first 10 a; (d) Auto-correlation plot;
(e) Probability plot; and (f) Quantile plot. There exists strong seasonal patterns and clusters of extremes.
We observe temporal dependence but it is less as compared to daily and weekly maxima (Figures 2d and
5d). The quality of probability and quantile plots is good and also better than that from daily and weekly

maxima (Figures 2e, 2f, Se, and 5f).

Dgp is less than one (Figures 4c and 8d). While temporal
dependence persists even after considering weekly maxima
residuals at (315, —10) where Dgp is between 1.5 and 2
(Figures 4c and 7d).

[20] The complete removal of seasonality from weekly
maxima data is not possible by removing long term mean of
weekly maxima from weekly maxima (Figure 7d). This
process changes the order of magnitude of weekly maxima
precipitation which leads to the changes in the order of
magnitude of excesses over a threshold. However, both
weekly maxima and weekly maxima residuals may produce

most of the extremes based on their respective 95%-quantile
thresholds at the same time but the excesses over their
respective thresholds do not have the same magnitudes
(Figures 5c, 7¢, 6c¢, and 8c). This may happen because the
selection of extremes is based on 95%-quantile threshold of
each time series rather than based on a fixed threshold. We
fit the GP distribution to excesses over 95%-quantile
threshold (Figure 9) for both weekly maxima and weekly
maxima residuals and plot the spatial variability of ¢ and &
and their standard errors (Figures 10, 1la, 11b, 12a, and
12b). We observe that the spatial variability of o and £ from
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Figure 8. Grid point having (longitude, latitude) as (310, —25): Weekly maxima residuals data with
threshold given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for
65 a; (b) Time series for 4 a; (c) Excesses over a threshold for the first 20 a; (d) Auto-correlation plot;
(e) Probability plot; and (f) Quantile plot. The seasonal patterns are absent. There is no improvement in
clustering of extremes as compared to weekly maxima (Figure 6¢). The temporal dependence disappears
completely. We observe significant improvements in temporal dependence as compared to daily and
weekly maxima (Figures 3d and 6d). The quality of probability and quantile plots is good.

weekly maxima residuals shows the same patterns as
obtained from weekly maxima in the most parts of South
America. However, we observe significant improvements in
the standard errors of o and ¢ from weekly maxima
residuals as compared to that obtained from weekly maxima.
The probability and quantile plots at two grids, i.e., (315,
—10) and (310, —25), indicate better quality of the fitted GP
distribution from weekly maxima residuals as compared to
that from weekly maxima (Figures 5Se, 51, 6¢, 6f, 7e, 7f, 8e,
and 8f). Since this study deals with the spatial and temporal
variability of extremes, we may get the same spatial and
temporal patterns from both weekly maxima residuals and

weekly maxima and thus, may not affect our interpretation
of the results. However, the analysis of weekly maxima
residuals has an edge over weekly maxima because of its
lower standard errors and improvements in the quality of
probability and quantile plots. Weekly maxima residuals
also show improvements in terms of temporal dependence
and Dgp if compared with weekly maxima. Thus we utilize
weekly maxima precipitation residuals for the analysis.
Yates et al. [2003] also considered weekly precipitation
residuals to understand the spatial and temporal dependen-
cies of the climate variables. The effect of the deseasonal-
ization procedure on the validity of the extreme value
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applications and parameter estimations may need to be
investigated in more depth in subsequent research efforts.

3. Results and Discussions

[21] We analyze weekly maxima residuals to investigate
the spatial and temporal variability of threshold, 50-a RL,
200-a RL, and PEVI (Figures 9, 13, 14, and 15). Increasing
or decreasing trends in precipitation from 1965-2004 can
be evaluated from the temporal variability of thresholds. At
each grid point, the threshold is chosen as the 95%-quantile
of time series. Spatial variability is investigated for 65 a
(1940—-2004) and the last 40 a (1965-2004) are analyzed
for the temporal variability, which is given as the slope of
linear trend obtained by fitting a regression line to 16 values
computed from 25-a moving window from 1965-2004,
ie., 1965-1989, 1966—1990,..., 1980—-2004. Using the
GP distribution, the spatial and temporal variations in ¢ and
¢ and their standard errors are evaluated and shown in
Figures 11 and 12. ¢ ranges from 5—15 mm at major parts
of South America except some parts of the Amazon basin,
north Argentina, and Paraguay where it is more than 15 mm
whereas the standard error of ¢ varies from 0-3 mm in the
whole South America (Figures 11a and 11b). From 1965—
2004, o increases in eastern Brazil including Rio De Janeiro
and major parts of the Brazilian Highlands, Uruguay, Para-
guay, some parts of north Argentina, south Venezuela,
French Guiana and Suriname whereas decreasing trends in
o are observed in the Amazon basin, Venezuela, the Mato
Grasso Plateau, Catingas, S3o Paulo, and Buenos Aires
(Figure 11c). ¢ is mostly greater than zero in the whole
South America except eastern Brazil and north Argentina
(Figure 12a). ¢ ranges from 0.4-0.6 and 0.2—0.4 in the
Catingas and Mato Grasso Plateau, respectively. The stan-
dard error of & varies from 0.05—0.15 in the whole South
America (Figure 12b). From 1965-2004, the temporal
variations in ¢ indicate increasing trends in Venezuela,
eastern Brazil including Rio De Janeiro and Sdo Paulo,
and major parts of the Amazon basin, the Brazilian High-
lands, Uruguay, Paraguay, and north Argentina including
Buenos Aires (Figure 12c¢).

[22] The daily data is analyzed to investigate the spatial
and temporal variability of consecutive 2- and 3-days
extremes (Figure 16). In this case, the threshold is chosen
as the 99%-quantile of daily time series. The consecutive
2- and 3-days are defined in terms of the percentage of the
number of extremes occurring consecutively for 2- and
3-days out of the total number of extremes. We also
investigate the spatial variations of monthly extremes which
is defined as the percentage of the number of extremes

Figure 9. Threshold in mm, defined as the 95%-quantile
of weekly maxima residuals at each grid point: (a) Spatial
variability of threshold from 1940-2004; (b) Temporal
variability at each point from 1965-2004 given as the slope
of linear trend obtained by fitting a regression line to
16 threshold values computed from 25-a moving window
from 1965-2004, i.e., 1965—-1989, 1966—1990,.. ., 1980—
2004; and (c) R? obtained from the regression line, which
provides an overall measure of the quality of linear trends
shown in (b). In (b), the white region at a location given by
(longitude, latitude) as (290, —5) indicates —1.64.
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Figure 10. Scale (o) and shape (§) parameters and their standard errors from weekly maxima
precipitation for 1940—2004: (a) Spatial variability of ¢ in mm; (b) Spatial variability of standard errors
of ¢ in mm; (c) Spatial variability of &; and (d) Spatial variability of standard errors of &.

occurring in a particular month out of the total number of
extremes (Figure 17).

[23] Individual nations need to make policy decisions
about water resources, agricultural planning, infrastructure
management and disaster readiness or mitigation strategies.
Thus we present our results by countries in 3.1-3.6. An
investigation of precipitation extremes in conjunction with
topography and vegetation, which is presented in 3.7, can
lead to enhanced hydrological and climatological insights.

3.1.

[24] In the Amazon basin, threshold is larger than the
other parts of Brazil but shows a decreasing trend from
1965-2004 (Figure 9). In the eastern parts of the Amazon

Brazil

basin, 50-a and 200-a RLs and their standard errors are
higher than the other parts of South America but these RLs
decrease more sharply as compared to the other parts of
South America from 1965-2004 (Figures 13 and 14). Both
50-a and 200-a RLs show decreasing trends from 1965—
2004 in the whole basin (Figure 14). The PEVI is higher in
some eastern parts of the basin but it decreases sharply from
1965—2004 in those parts (Figure 15). We observe increas-
ing PEVI trends from 1965—-2004 in the major parts of the
basin including north-west (NW) where it shows sharply
increasing trends. The percentage of the number of consec-
utive 2-days extremes is less than 10% whereas the major
parts of the basin have zero number of consecutive 3-days
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Scale parameter (o) and its standard errors in mm from weekly maxima precipitation
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1940—2004; (c) Temporal variability from 1965—2004; and (d) R* from linear trends shown in (c). In
(c), the white region at a location given by (longitude, latitude) as (295, —2.5) indicates —1.77.

extremes (Figures 16a and 16b). From 1965-2004, the
percentage of consecutive 2-days extremes increases only
in the western parts of the basin whereas no trends in the
percentage of consecutive 3-days extremes are observed
because of zero number of consecutive 3-days extremes in
the basin (Figures 16¢ and 16d).

[25] In Catingas and the Mato Grasso Plateau, thresholds
are lower and show decreasing trends from 1965-2004
(Figure 9). Catingas has the highest 50-a RL, 200-a RL, and
PEVI but their trends indicate downward behavior from
1965-2004 (Figures 13, 14, and 15). In the Mato Grasso
Plateau, the PEVI is higher relative to the major parts of

South America and lies between 1.4 and 1.5 but it shows a
decreasing trend from 1965-2004 (Figure 15). The number
of consecutive 2- and 3-days extremes are less than 10%
and 2% of the total extremes, respectively, in both Catingas
and the Mato Grasso Plateau (Figures 16a and 16b). From
1965-2004, the percentage of consecutive 2-days extremes
shows increasing trends in Catingas and some parts of the
Mato Grasso Plateau whereas the percentage of consecutive
3-days extremes indicates increasing and deceasing trends
in Catingas and the Mato Grasso Plateau, respectively
(Figures 16¢ and 16d).
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Figure 12. Shape parameter (£) and its standard errors from weekly maxima precipitation residuals:
(a) Spatial variability of £ from 1940—2004; (b) Spatial variability of standard errors of £ from 1940—
2004; (c) Temporal variability from 1965—-2004; and (d) R? from linear trends shown in (c). In (c), the
white region at a location given by (longitude, latitude) as (295, —2.5) indicates 0.063.

[26] In the Brazilian Highlands, threshold is low but it
shows an increasing trend in the southern parts (Figure 9).
Thresholds are low in east Brazil except south eastern Brazil
where they are much higher relative to the other parts of
South America. From 1965-2004, we observe increasing
trends in threshold along eastern coastal regions of Brazil
including Rio De Janeiro but thresholds show decreasing
trends in Brasilia, Sdo Paulo and their surrounding regions.
50-a RL, 200-a RL, and PEVI are low in the Brazilian
Highlands and east Brazil but they show increasing trends
in the major parts of the Brazilian Highlands and east Brazil
including Rio De Janeiro and Sao Paulo (Figures 13, 14,
and 15). In Brasilia, decreasing trends in PEVI are observed

from 1965-2004 (Figure 15). 20-35% and 6-16% of the
total extremes occur consecutively for 2 and 3 days,
respectively, in the Brazilian highlands and north-east
(NE) Brazil (Figures 16a and 16b). In Rio De Janeiro and
Sdo Paulo, 15-20% of the total extremes occur for 2 days
consecutively (Figure 16a). From 1965—-2004, the number
of consecutive 2- and 3-days extremes show increasing
trends in NE Brazil, few parts of the Brazilian Highlands
and east Brazil including Sao Paulo but they decrease in Rio
De Janeiro (Figures 16¢ and 16d). In Brasilia, the number of
consecutive 2-days and 3-days extremes vary 20-25% and
6-8%, respectively, and they show decreasing trends from
1965-2004 (Figure 16).
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Figure 13. Spatial variability of 50-a and 200-a RLs and their standard errors in mm from weekly
maxima precipitation residuals for 1940—2004: (a) 50-a RL; (b) Standard errors of 50-a RL; (c) 200-a
RL; and (d) Standard errors of 200-a RL. In (d), the white region at a location given by (longitude,

latitude) as (312.5, —7.5) indicates 193.48 mm.

[27] The Amazon basin experiences most of the extremes
from January to April with March being the month most
prone to extremes while it receives most of the precipitation
from December to May (Figure 17). The wetter months in
NE Brazil and Catingas are from December to May but they
receive most of the extremes from January to April with
March receiving the highest number of extremes. The Mato
Grosso Plateau experiences most extremes from December
to February with January receiving the highest number of
extremes. The Brazilian highlands and south-cast (SE)
Brazil receives most of the precipitation from November
to April but the highest number of extremes are observed in
the summer months, i.e., December to February, with

January being the most critical with respect to the number
of extremes.

3.2. North Argentina

[28] Some parts of NE Argentina including Buenos Aires
have higher thresholds relative to the other parts of South
America (Figure 9). From 1965-2004, increasing trends in
threshold are observed in the major parts of north Argentina
excluding Buenos Aires. 50-a and 200-a RLs do not show
much variations and their trends from 1965-2004 show
increasing behavior in the major parts excluding Buenos
Aires (Figures 13 and 14). The PEVI ranges from 1.1-1.2 in
the major parts but it also lies between 1.2 and 1.3 in some
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Figure 14. Temporal variability of 50-a and 200-a return levels (RL) from weekly maxima precipitation
residuals for 1965—2004: (a) Temporal variability of 50-a RL from 1965—-2004; (b) R? from linear trends
shown in (a); (c) Temporal variability of 200-a RL from 1965—-2004; and (d) R from linear trends shown
in (c). In (c), the white regions at four locations given by (longitude, latitude) as (292.5, —5), (302.5, —5),
(305, —5) and (307.5, —7.5) indicate —22.07, —26.39, —21.12, and —34.47, respectively.

parts including Buenos Aires (Figure 15). Only some parts
of north Argentina excluding Buenos Aires show increasing
trends in PEVI from 1965—-2004. Less than 10% of the total
extremes occur consecutively for 2 days (Figure 16a). The
number of consecutive 3-days extremes is zero everywhere
except in Buenos Aires and its surrounding regions where it
is less than 2% (Figure 16b). Increasing trends in consec-
utive 2-days extremes are observed in the major parts from
1965-2004 (Figure 16c). For consecutive 3-days extremes,
most of the areas experiences either no trends because of
zero consecutive 3-days extremes or decreasing trends from

1965-2004 (Figure 16d). From 1965-2004, Buenos Aires
receives increasing and decreasing number of consecutive
2-days and 3-days extremes, respectively. Argentina
receives most of the precipitation in the summer months,
i.e., December to February, but it experiences most of the
extremes in late summer and autumn, i.e., February to April,
with March receiving the highest number of extremes
(Figure 17).

3.3. Venezuela

[29] In Venezuela, thresholds are low but they show
increasing trends from 1965-2004 everywhere except in
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some southern parts (Figure 9). We do not observe much
variations in 50-a and 200-a RLs but these RLs show
increasing trends from 1965-2004 only in the northern
parts including Caracas (Figures 13 and 14). The PEVI is
between 1.2 and 1.3 everywhere except in NW including
Caracas where it is high and ranges from 1.3-1.6 (Figure 15).
Increasing trends in PEVI are observed from 1965-2004 in
the major parts including Caracas. Some northern parts
including Caracas receive 5—10% of the total extremes
for 2 days consecutively (Figure 16a). Venezuela does not
experience extremes occurring for 3 days consecutively
(Figure 16b). From 1965-2004, the number of consecutive
2-days extremes shows increasing trends only in south
Venezuela whereas no trends are observed in consecutive
3-days extremes in the major parts since these parts do not
receive consecutive 3-days extremes (Figures 16¢ and 16d).
Decreasing trends in consecutive 3-days extremes are
observed from 1965-2004 only in east Venezuela. The
main rainy season in Venezuela is from May to November
and it receives the most number of extremes from June to
August with June being the most critical with respect to the
number of extremes (Figure 17).

3.4. Uruguay

[30] Uruguay has high thresholds in South America and
their trends from 1965-2004 indicate increasing levels in
the most parts except Montevideo and its surrounding
regions (Figure 9). We do not observe much variations in
50-a and 200-a RLs and their trends show increasing
behavior from 1965—-2004 everywhere except in Montevi-
deo and its surrounding areas (Figures 13 and 14). The
PEVI ranges from 1.2-1.3 everywhere and it shows increas-
ing trends from 1965-2004 in the whole country except
Montevideo and its surrounding regions (Figure 15). 5-10%
of the total extremes occur consecutively for 2 days whereas
less than 2% of the total extremes occur for 3 days
consecutively (Figures 16a and 16b). From 1965-2004,
decreasing trends in the number of both consecutive 2- and
3-days extremes are observed (Figures 16¢ and 16d).
Uruguay receives most of the precipitation in the autumn
months, i.e., March to May, but the highest number of
extremes are observed in April and October (Figure 17).

3.5. Paraguay

[31] In Paraguay, thresholds are high and they show
increasing trends from 1965-2004 in most parts including
Asuncion (Figure 9). 50-a RLs do not vary much whereas
some variations are observed in 200-a RLs (Figure 13).
Increasing trends in both 50-a and 200-a RLs are observed
from 1965-2004 but these trends increase more rapidly in
Asuncion and its surrounding areas as compared to the other
parts (Figure 14). The PEVI varies from 1.1-1.3 everywhere

Figure 15. Precipitation extremes volatility index (PEVI),
defined as the ratio of 200-a and 50-a RLs, from weekly
maxima precipitation residuals: (a) Spatial variability for
1940-2004; (b) Temporal variability from 1965—2004; and
(c) R* from linear trends shown in (b). In (a), the white
regions at two locations given by (longitude, latitude) as
(312.5, —7.5) and (315, —7.5) indicate 2.22 and 1.82,
respectively. In (b), the white region at a location given by
(longitude, latitude) as (307.5, —7.5) indicates 0.042.
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Figure 16. Percentage of the number of consecutive 2- and 3-days extremes out of the total number of
extremes based on daily precipitation for 1940—2004. Threshold is chosen as the 99%-quantile of daily
time series. (a) Spatial variability of consecutive 2-days extremes from 1940—2004; (b) Spatial variability
of consecutive 3-days extremes from 1940—-2004, where the yellow regions showing values between
0 and —2 do not indicate any values but represents regions where the number of consecutive 3-days
extremes is zero; (c) Temporal variability of consecutive 2-days extremes from 1965-2004; (d) Temporal
variability of consecutive 3-days extremes from 1965-2004, where the yellow regions showing values
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3-days extremes is zero; (¢) R* from linear trends shown in (c); and (f) R* from linear trends shown in (d),
where the yellow regions that lies between 0 and -0.2 do not indicate R* values but represents grids where
the number of consecutive 3-days extremes is zero. In (c), the white region at a location given by
(longitude, latitude) as (295, —7.5) indicates 4.66. In (d), the white regions at two locations given by
(longitude, latitude) as (295, —7.5) and (302.5, —10) indicate 4.71 and —0.97, respectively.
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except in Asuncion and its surrounding regions where it
varies from 1.3—1.4 (Figure 15a). From 1965-2004, the
PEVI increases in the major parts but it is increasing more
rapidly in Asuncion and its surrounding areas as compared
to the other parts (Figure 15b). The number of extremes
occurring consecutively for 2 days is less than 10% of the
total extremes whereas the major parts of the country do not
receive consecutive 3-days extremes (Figures 16a and 16b).
Decreasing trends in both consecutive 2- and 3-days
extremes are observed from 1965-2004 (Figures 16¢ and
16d). In Asuncion, less than 5% and 2% of the total
extremes occur for 2 and 3 days consecutively, respectively,
and their trends show decreasing behavior from 1965-—
2004. Paraguay receives heavy precipitation in summer,
i.e., October to March, and experiences the most number of
extremes from December to February with December re-
ceiving the highest number of extremes (Figure 17).

3.6. Suriname and French Guiana

[32] In Suriname and French Guiana, thresholds are low
but their trends from 1965-2004 show sharply increasing
behavior everywhere including Paramaribo and Cayenne
(Figure 9). No variations in 50-a and 200-a RLs are
observed but trends in 50-a and 200-a RLs decrease in
Suriname and increase in some parts of French Guiana
including Cayenne (Figures 13 and 14). The PEVI lies
between 1.2 and 1.4 in Suriname whereas it ranges from
1.2—1.3 in French Guiana (Figure 15a). From 1965-2004,
the PEVI shows decreasing trends in both Suriname and
French Guiana except Cayenne where the PEVI increases
(Figure 15b). The number of consecutive 2-days extremes
varies from 1-20% in Suriname with Paramaribo receiving
15-20% whereas it ranges from 10—15% in French Guiana
(Figure 16a). Suriname receives less than 4% of the total
extremes for 3-days consecutively with Paramaribo receiv-
ing 2—4% whereas in French Guiana, the number of
consecutive 3-days extremes is less than 2% (Figure 16b).
From 1965-2004, both consecutive 2- and 3-days extremes
show decreasing trends in Suriname and increasing trends
in the major parts of French Guiana including Cayenne
(Figures 16¢ and 16d). Suriname receives heavy precipita-
tion from April to August and experiences most of the
extremes from April to June with May being the most
critical with respect to the number of extremes (Figure 17).
In French Guiana, the rainy season goes from April to July
and the most intense months in terms of the number of
extremes are from March to May with May receiving the
highest number of extremes (Figure 17).

3.7. Extremes With Topography and Vegetation

[33] In mid- and high-altitudes of the Brazilian highlands
and east Venezuela, the PEVI varies from 1.1-1.4 and
shows increasing trends from 1965-2004 in some areas
(Figure 15a). The high-altitudes of the Brazilian Highlands
receive 20—35% and 6—16% of the total extremes consec-
utively for 2 and 3 days, respectively, and their trends
show increasing behavior from 1965-2004 in some parts
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(Figure 16). However, in the high-altitudes of east Vene-
zuela, consecutive 3-days extremes are not observed and
less than 5% of the total extremes occur consecutively for
2 days and its trends show decreasing behavior from 1965—
2004. The mid-altitudes and lowlands of east Brazil indicate
very less variations in PEVI which lies between 1.1 and 1.2
but most of the eastern Brazil, which includes Rio De
Janeiro and Sdo Paulo, experience increasing trends in
PEVI from 1965-2004 (Figure 15). In east Brazil, the
number of consecutive 2- and 3-days extremes range from
10-30% and 1-14%, respectively, and their trends show
increasing behavior from 1965-2004 only in some parts
including Sao Paulo (Figure 16). Catingas with lowlands
has the highest PEVI in South America whereas the low-
lands of the Amazon basin and the Mato Grasso Plateau
have higher PEVI values (Figure 15a). In the lowlands of
Venezuela, north Argentina, Uruguay, Paraguay, Suriname,
and French Guiana, the PEVI lies between 1.1 and 1.3
(Figure 15a). From 1965-2004, the major parts of the low-
lands of the Amazon basin, north Venezuela, north Argen-
tina, Uruguay, and Paraguay experience increasing trends
in PEVI whereas decreasing trends in PEVI are observed in
the lowlands of the Mato Grasso Plateau, Suriname, and
French Guiana except Cayenne (Figure 15b). All the low-
lands regions of Brazil, north Argentina, Venezuela, Para-
guay, Uruguay, Suriname and French Guiana experience less
than 10% of the total extremes for 2 days consecutively
whereas the number of consecutive 3-days extremes is zero in
most of these areas (Figures 16a and 16b). Only some of the
lowlands areas of the Amazon basin particularly western
parts of the basin, the Mato Grasso Plateau, south Venezuela,
and north Argentina experience increasing number of con-
secutive 2-days extremes from 1965-2004 (Figure 16c).
[34] In the evergreen forests of the Amazon basin, south
Venezuela, Suriname, and French Guiana, the PEVI ranges
from 1.1-1.3 (Figure 15a). Catingas with evergreen forest
has the highest PEVI in South America. Increasing trends in
PEVI are observed only in some parts of the Amazon basin
and south Venezuela (Figure 15b). In the Amazon basin,
Catingas, and south Venezuela, the number of consecutive
2-days extremes is less than 10% of the total extremes
and its trends show increasing behavior from 1965-2004
(Figures 16a and 16c). In Suriname, the number of consec-
utive 2-days extremes varies from 1-20% and shows
decreasing trends from 1965-2004 whereas it ranges from
10—15% and indicates increasing trends from 1965-2004
in French Guiana. The number of consecutive 3-days
extremes is zero in the evergreen forests of Catingas, south
Venezuela, and some parts of the Amazon basin and shows
decreasing trends in Suriname and increasing trends in the
major parts of French Guiana from 1965-2004 (Figures
16b and 16d). In the savannas of north Venezuela, the PEVI
ranges from 1.2—1.6 and shows increasing trends from
1965—-2004 while the number of consecutive 2-days
extremes is less than 10% and shows decreasing trends
from 1965-2004 (Figures 15 and 16). In the cropland/

Figure 17. Percentage of the number of monthly extremes out of the total number of extremes based on daily precipitation
for the period 1940—2004. Threshold is chosen as the 99%-quantile of daily time series. Extremes mostly occur from
December to April with January receiving the highest number of extremes. The period from July to October is relatively

quieter with respect to extremes.
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natural vegetation of the Brazilian highlands, the Mato
Grasso Plateau, east Brazil, north Argentina, Uruguay, and
Paraguay, the PEVI is low and lies between 1.1 and 1.3 and
shows increasing trends from 1965-2004 in some of their
areas (Figure 15). The Brazilian highlands and NE Brazil
experience 20-35% and 6-16% of the total extremes con-
secutively for 2 and 3 days, respectively, and their trends
show increasing behavior from 1965-2004 in some areas
(Figure 16). Less than 10% of the total extremes occur
consecutively for 2 days in the Mato Grasso Plateau, SE
Brazil, north Argentina, Uruguay, and Paraguay but their
trends increase from 1965—-2004 in some parts of the Mato
Grasso Plateau and north Argentina. The number of con-
secutive 3-days extremes is less than 2% in SE Brazil, some
parts of the Mato Grasso Plateau, north Argentina, Uruguay,
and Paraguay. From 1965-2004, trends in consecutive
3-days extremes decrease in SE Brazil, the Mato Grasso
Plateau, Uruguay, Paraguay but increase in some parts of
north Argentina.

[35] A caution should be exercised while interpreting the
results at all those grid points where Dgp is greater than one
since at these grid points, we reject with 95% confidence
that the inter-arrival times of threshold excesses follow a
homogeneous Poisson process. The variability of extremes
needs to be interpreted with care in view of issues like
spatiotemporal variability in the quality of the observations
as well as the possible influence of geographical features,
atmospheric conditions, climate teleconnections and other
phenomena that have not been considered in this study. The
insights on the spatial and temporal variability of extremes
will probably be more relevant in a comparative sense and
at aggregate space-timescales rather than for the extremal
analysis of individual points or for understanding localized
phenomena related to extremes.

4. Summary and Conclusions

[36] This study analyzed the spatial and temporal vari-
ability of precipitation extremes in South America based on
daily precipitation data available in 2.5° gridded fields from
1940-2004. At each grid point, 65 a of data from 1940—
2004 were used to understand spatial variability whereas the
temporal variability was investigated for 40 a (1965—2004)
and was given as the slope of linear trend obtained by fitting
a regression line to 16 values computed from 25-a moving
window from 1965-2004, i.e., 1965-1989, 1966—
1990,. .., 1980-2004. We analyzed weekly precipitation
maxima residuals and utilized the Poisson-GP model to
investigate the spatial and temporal variability of threshold,
the scale (o) and shape (&) parameters, and 50-a and 200-a
RLs. The temporal variability of precipitation were evalu-
ated from the temporal variability of thresholds. The thresh-
old was chosen as the 95%-quantile of time series. We also
investigated the spatial and temporal variability of the
PEVI, which measures the variability of extremes and is
defined as the ratio of 200-a and 50-a RLs. On the basis of
daily precipitation data, we investigated the spatial and
temporal variability of the percentage of the number of
consecutive 2- and 3-days extremes out of the total number
of extremes. The spatial variability of the percentage of the
number of extremes in a particular month out of the total
number of extremes was also investigated based on daily
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precipitation data. The threshold for the analysis of daily
precipitation data was chosen as the 99%-quantile of time
series.

[37] Precipitation is high indicated by high thresholds in
SE Brazil, Uruguay, Paraguay, and Buenos Aires. The PEVI
is high in the eastern parts of the Amazon basin, Catingas,
Mato Grasso Plateau, NW Venezuela including Caracas,
and Asuncion. From 1965-2004, both precipitation and the
PEVI show increasing trends in the eastern coastal regions
of Brazil including Rio De Janeiro, the Brazilian highlands
particularly southern parts, north Venezuela including Cara-
cas, some parts of north Argentina, Uruguay, Paraguay
including Asuncion, and Cayenne. The Amazon basin
except eastern parts and Sdo Paulo experience increasing
trends in the PEVI and decreasing trends in precipitation. In
the eastern parts of the Amazon basin, Catingas, the Mato
Grasso Plateau, Brasilia, Buenos Aires, and Montevideo,
simultaneous decreasing trends are observed in precipitation
and the PEVI. The PEVI shows decreasing trends in
Suriname including Paramaribo and French Guiana exclud-
ing Cayenne although increasing precipitation trends are
observed in these areas. The number of consecutive 2- and
3-days extremes are high in the Brazilian Highlands, NE
Brazil, and Brasilia. Trends in precipitation and the number
of both consecutive 2- and 3-days extremes increase in few
parts of the Brazilian Highlands and some parts of French
Guiana including Cayenne. Catingas and some parts of east
Brazil including Sdo Paulo experience increasing trends in
the number of consecutive 2- and 3-days extremes and
decreasing trends in precipitation. The precipitation shows
increasing trends whereas the number of consecutive 2- and
3-days extremes show decreasing trends in NE coastal
regions of Brazil, Rio De Janeiro, Uruguay, Paraguay
including Asuncion, and Suriname including Paramaribo.
In Brasilia, both precipitation and the number of consecu-
tive 2- and 3-days extremes show decreasing trends simul-
taneously. The number of consecutive 2-days extremes also
show increasing trends in the Amazon basin particularly
western parts, some parts of the Mato Grasso Plateau, and
Buenos Aires although precipitation shows decreasing
trends in these areas. Simultaneous decreasing trends are
observed in precipitation and the number of consecutive
3-days extremes in the Mato Grasso Plateau and Buenos
Aires from 1965-2004.

[38] The areas of interest based on an increasing PEVI
from 1965-2004, are the Amazon basin, the Brazilian
Highlands, Venezuela, Uruguay, Paraguay, and some of
the highly populated cities in South America, specifically
Rio De Janeiro, Sao Paulo, Caracas, Asuncion, and Cayenne.
Some parts of east Brazil, few parts of the Brazilian high-
lands, Sao Paulo, and Cayenne also experience increasing
number of consecutive 2- and 3-days extremes. Water
resources engineers and planners, disaster management
agencies, and policy makers need to pay special attention
to the regions with increasing trends in the PEVI and
consecutive 2- and 3-days daily extremes, especially when
these regions overlap with densely populated areas, while
planning for infrastructure development and disaster man-
agement. Civil engineers can utilize the results of this study
for the design of hydraulic structures, specifically when
considering the optimal safety factors in their design.
Hydrologists and climatologists need to delve deeper into
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the potential causes of the observed spatiotemporal trends in
extremes for delineating the variability of extremes due to
natural and anthropogenic effects.

[39] Precipitation extremes may result in significant loss
of human life and property. However, the damages caused
by precipitation can be influenced by a variety of factors
other than just precipitation maxima or the statistical prop-
erties thereof. These factors include surface and sub-surface
hydrology since the damages caused by precipitation
extremes are primarily caused by floods and flash floods,
which, in turn, are strongly influenced by the physics of
runoff and infiltration. The other factor is population:
certainly the (catastrophic) impact of disasters depends on
(high) population densities and the location of critical
infrastructures or national/human assets which may be
potentially damaged by precipitation extremes. Finally, the
actual damages would also be a function of resilience of
communities and critical infrastructures to precipitation
extremes and related disasters.

[40] Future research needs to explore the use of extreme
value theory in conjunction with more advanced physically
based or statistical models of precipitation, as well as the
utilization of emerging techniques for the estimation of the
extreme value parameters directly as a function of time,
seasonality and other covariates. In addition, development
of heuristic approaches for the estimation of optimal thresh-
olds in the context of precipitation data may need to be
explored, since similar approaches developed for other
types of data may or may not be directly applicable to
precipitation data, especially when the data sets are large.
Hydrologists and climatologists can perform further
research based on this study to understand the natural or
anthropogenic causes driving precipitation extremes and
their spatial or temporal trends. Future research may com-
bine the PEVI used in this study with other factors like
population and critical infrastructures to estimate the poten-
tial risks from extremes and subsequently with development
or financial indices to estimate the corresponding impacts.
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